

ECSE-539 Advanced So1ware Engineering

Winter 2022

Autonomous Prognos>cs and Health Management
Automa>on Language (APHMAL)

Project Report

Group #539P 2
 Laffey, Ian ID# 260820791

Popov, Alex ID# 261057081

April 10, 2022

ECSE-539 Advanced So1ware Engineering
Autonomous Prognos>cs and Health Management Automa>on Language (APHMAL)

Project (April 10, 2022)
Group #539P 2

 Laffey, Ian ID# 260820791
Popov, Alex ID# 261057081

(the alphabe?cal order reflects also the contribu?on made by the team members in
descending order)

TABLE OF CONTENTS

1. INTRODUCTION ………………………………………………………………………………………..…………..1

2. RESPECTIVE CONTRIBUTION MADE BY THE PROJECT TEAM MEMBERS…..………..……..…………2

3. LANGUAGE ENGINEERING AND TRANSFORMATION ENVIRONMENT……………………………………3

4. DESCRIPTION OF THE DOMAIN-SPECIFIC LANGUAGE CHOSEN : APHMAL …………………….……4

5. APHMAL METAMODEL ………………………………………………………………………………….………4

6. THE ROUTINE TO RUN APHMAL EDITOR ……………………………………………………………………6

7. THE ROUTINE TO ANALYZE/EXECUTE APHMAL ………………………………………………………….7

8. THE LANGUAGE INVOLVED IN THE APHMAL TRANSFORMATION……………………………………14

9. MAPPING FROM SOURCE LANGUAGE TO TARGET LANGUAGE……………………………………..…14

 2

ECSE-539 Advanced So1ware Engineering
Autonomous Prognos>cs and Health Management Automa>on Language (APHMAL)

Project (April 10, 2022)
Group #539P 2

 Laffey, Ian ID# 260820791
Popov, Alex ID# 261057081

(the alphabe?cal order reflects also the contribu?on made by the team members in
descending order)

1. Introduc>on

The Prognos?cs and Health Management (PHM) is a part of Systems Engineering domain and is essen?al
to properly design and implement aerospace-related programs and projects while PHM for Human
Health and Performance (HH&P) is a PHM-based applica?on, since the paradigm shiU on the programs
from telemedicine to HH&P autonomy and NASA’s adop?on of Model-Based Systems Engineering
(MBSE) begun as early as 2011. MBSE Pathfinder and MBSE Infusion and Moderniza?on Ini?a?ve
(MAIAMI) are the examples of NASA efforts being taken for the last five years, just to name a few, while
our project team believes that the APHMAL domain-specific language that is discussed on this project is
another complimentary effort in this direc?on. The APHMAL could be a part of the PHM-for-HH&P
solu?on with predic?ve screening capability, providing early and ac?onable real-?me warnings on
impending health issues that otherwise would have gone undetected unless a symptom is manifested or
a sign is detected at a rela?vely late stage.

The project discusses the APHMAL defini?on, the metamodel of the domain-specific language, and
transforma?on which is about customizing and mapping a standard sensor set to an individualized set
for every crew member based on his/her pre-flight health screening results. The project also discusses
language engineering and the transforma?on environment chosen.

2. RESPECTIVE CONTRIBUTION MADE BY THE PROJECT TEAM MEMBERS
(The sec(on with a one-paragraph descrip(on of who did what for the project)

Breakdown of work by Project part:
Part 1 Source Code: Ian only
Part 2 Report: Sec?on 1, Some of Sec?on 4, Formabng & General edi?ng: Alex. All other sec?ons: Ian
Part 3 Video: Ian only
Part 4 Demo: Some slides prepared by Alex, technical descrip?ons and screenshots provided by Ian

 3

ECSE-539 Advanced So1ware Engineering
Autonomous Prognos>cs and Health Management Automa>on Language (APHMAL)

Project (April 10, 2022)
Group #539P 2

 Laffey, Ian ID# 260820791
Popov, Alex ID# 261057081

(the alphabe?cal order reflects also the contribu?on made by the team members in
descending order)

3. LANGUAGE ENGINEERING AND TRANSFORMATION ENVIRONMENT
The sec(on with a detailed two-page experience report about your chosen language engineering and
transforma(on environment including a discussion on what went well and what did not go well.
The experience report will be wri?en in the first person, from the experien(al perspec(ve of Ian Laffey

Note:
For descrip(ons of Eclipse UI interac(ons in bold, note that this run on Mac OS with
Eclipse Modeling Tools
Version: 2021-12 (4.22.0)
Build id: 20211202-1639
These UI interac(on descrip(ons are added as helpful informa(on, your UI experience may vary.

The first step towards crea?ng the language engineering and transforma?on environment (henceforth
referred to simply as “the environment”) was to establish a working draU of the metamodel. This was
done with eCore to begin with, as that is what I had the most experience using for metamodelling. AUer
gathering feedback from Gunter, changes were implemented to the meta model and it was converted to
Emfa?c.

Emfa?c is a part of Epsilon- the set of modeling languages and tools that we used to create our
environment. Epsilon installa?on is done through the Eclipse installa?on manager. Installing the requisite
packages was done by selec?ng Help->Install New So1ware on Eclipse, and entering the URL of the
Epsilon Eclipse Install Site. Emfa?c and ETL are a part of the Epsilon Core, and Flexmi was a separate
installa?on, as tools in Epsilon are not included in the Epsilon Core. The only difference with installing
Flexmi was a change of URL to the Flexmi Eclipse Install Site.

Now that Emfa?c (and the rest of the Epsilon tools we will be using for our project) is installed through
Eclipse, the features are available in Eclipse aUer a restart. The exis?ng eCore model (.eCore extension)
was easily mappable to Emfa?c source (.emf extension) through Eclipse -> Right Click on eCore Model ->
Generate Emfa>c Source. Now that the Emfa?c source had been generated, further changes could be
made to the metamodel “on the fly” by edi?ng the textual descrip?on of the metamodel. This was
especially useful for the scope of our environment, because the qualityType enum could be easily
changed by a user to add more qualityType op?ons to the language specifica?on.

In order to integrate Emfa?c with other Epsilon based tools, it is necessary to use EPackages. Registering
EPackages is done through Eclipse Right Click on *.emf -> Register EPackages. It is also worth no?ng at
this point that EPackages use a URI, and specifica?on of the package URI can be done through Emfa?c.
Registered EPackages are given the URI specified in their corresponding Emfa?c source. Now that the
EPackage has been generated, it can be referenced in all other Epsilon tools through a URI. The chosen
URI for our EPackage was aphmal.

 4

ECSE-539 Advanced So1ware Engineering
Autonomous Prognos>cs and Health Management Automa>on Language (APHMAL)

Project (April 10, 2022)
Group #539P 2

 Laffey, Ian ID# 260820791
Popov, Alex ID# 261057081

(the alphabe?cal order reflects also the contribu?on made by the team members in
descending order)

Now that our EPackage has been generated, our metamodel specifica?on can be used with our other
Epsilon based tools, languages, files. Any further changes to the metamodel can then be re-exported and
picked up by the Epsilon based tools (A refresh may be necessary).

The next step is to create Input models using Flexmi (YAML flavor, indenta?on based). The YAML Flavor
provides no func?onal/seman?c difference from the standard Flexmi. It is merely to do with syntax of
the terms. Defining a Flexmi file consists of specifying the URI of the metamodel (this links the model to
the metamodel), and then specifying the model elements with the Flexmi YAML Flavor, Indenta?on
Based syntax. More info about the syntax can be found at hkps://www.eclipse.org/epsilon/doc/flexmi/.

It is also worth no?ng here that Flexmi files do not currently support programma?c saving
(resource.save()), and so I was unable to find a way to generate Flexmi models programa?cally. Flexmi is
therefore used to create and specify Input models in a lightweight, user friendly (even for non-technical
users), however Output models are saved as EMF .model files.

If a Flexmi model is created correctly, the Eclipse Outline View (Accessible through Eclipse -> Window ->
Show View -> Outline) will display a view of the model (similar to a EMF .model file) with a tree-like
containment view of model elements, references, akributes, etc. A couple of sample Flexmi models were
created in order to test out Flexmi features and metamodel, some tweaks were made to the metamodel
aUer seeing how actual model specifica?on occurred, and more sample input models were planned for
the future.

Now that we have established input models, the next task is the actual transforma?on itself. More
details about the transforma?on will be discussed later in this report. In order to specify the
transforma?on, Epsilon ETL was used (.etl file extension). ETL requires input and output models specified
through Right click on *.etl -> Run as -> Run configura>ons -> ETL Transforma>on -> Models tab -> Add.
Our input and output metamodel are the same (and referenced through apmhal EPackage), however the
input file is specified as “*.flexmi”, and the output filetype is specified as “*.model”. In order to run ETL
transforma?ons, rules are necessary. More about rule syntax is available at: hkps://www.eclipse.org/
epsilon/doc/etl/ It is worth no?ng that transforma?on use the form
rule name
transform s :input!Class
to t : output!Class{
(EOL Statements)+
}
where name can be anything, input refers to the name of the model for input (not the metamodel, the
model name specified in ETL run configura?ons), output refers to the name of the output model, Class is
a class in the metamodel. More about EOL Statements here: hkps://www.eclipse.org/epsilon/doc/eol/

Our model transforma?on necessitated an algorithm for mapping Sensors and Responders to
Biomarkers, based on minimizing a sum of integer values in this mapped set (more about this
elsewhere). ETL was not designed for such an algorithm, and I’m unfamiliar with EOL (Maybe EOL would
have been a reasonable choice for implemen?ng such an algorithm, but I am more comfortable in Java
and so I used Java), so the algorithm was defined in Java.

 5

https://www.eclipse.org/epsilon/doc/flexmi/
https://www.eclipse.org/epsilon/doc/etl/
https://www.eclipse.org/epsilon/doc/etl/
https://www.eclipse.org/epsilon/doc/eol/

ECSE-539 Advanced So1ware Engineering
Autonomous Prognos>cs and Health Management Automa>on Language (APHMAL)

Project (April 10, 2022)
Group #539P 2

 Laffey, Ian ID# 260820791
Popov, Alex ID# 261057081

(the alphabe?cal order reflects also the contribu?on made by the team members in
descending order)

Epsilon provides a way of integra?ng Java code into EOL statements. This is done through crea?ng a plug-
in project, adding an extension point to Epsilon tools, expor?ng the plug-in, adding the plug-in to Eclipse
dropping, where it can then be called by the command
var sampleTool = new Na>ve("org.eclipse.epsilon.examples.tools.SampleTool");
This creates sampleTool as a na?ve Java object that we can use to pass in our input Biomarker list, and
receive our output Device list. (Other things are passed to the method call to facilitate algorithm
execu?on, but at a high-level, it just maps biomarker lists to device lists for a specific astronaut)
We execute this algorithm for each of our Astronauts as specified in our ETL Transforma?on. Note that
sta?c calls to na?ve Java methods are also possible in ETL.

Now that this algorithm (which can be viewed as a black box by ETL), is completed the transforma?on is
rela?vely simple. ETL syntax is very similar to ATL syntax. Running the ETL transforma?on produces an
output model as expected. At this point, as debugging and tes?ng of the transforma?on was occurring,
addi?onal sample input models were created for tes?ng purposes.

Finally, a set of input models was chosen for submission (as opposed to tes?ng) to demonstrate the
features of our transforma?on.

What went well What didn’t go well

Able to create an input specifica?on
that is (I believe), very user friendly/
non technical

Sebng up these tools is non-trivial.
Need to look carefully through
documenta?on to figure out how to
set up the tools, and looking them up
is of likle use as they are not
par?cularly mainstream currently.

Implement algorithm using rather
complicated reflexive opera?ons and
deep inheritance structure. Learned a
lot about eCore and Epsilon objects.

Typical errors due to coding while
?red. Issues such as shallow vs deep
copying of a list. Needing to create re-
usable code (for sensor and responder
lists). Actual sensor mapping algorithm
wasn’t completely trivial and some
mistakes were made there.

 6

ECSE-539 Advanced So1ware Engineering
Autonomous Prognos>cs and Health Management Automa>on Language (APHMAL)

Project (April 10, 2022)
Group #539P 2

 Laffey, Ian ID# 260820791
Popov, Alex ID# 261057081

(the alphabe?cal order reflects also the contribu?on made by the team members in
descending order)

4. DESCRIPTION OF THE DOMAIN-SPECIFIC LANGUAGE CHOSEN : APHMAL
(The sec(on with a two-paragraph descrip(on of your chosen domain-specific language.)

Alex is running the “PHM for HH&P” session on the annual IEEE Aerospace conference and suggested the
domain-specific language for the project. The APHMAL could be a part of the PHM-for-HH&P solu?on
with predic?ve screening capability, providing early and ac?onable real-?me warnings on impending
health issues that otherwise would have gone undetected.

Gained experience in working with
complicated tools with likle “google
ability”. Docs were preky solid, but
google did not work. Because of this I
needed to really look through the
documenta?on and understand what
was going on as opposed to looking up
individual components.

Transferring an on-paper algorithm
(where you can say for example: “if
sensor name is x”) to an algorithm
using EObjects, EDynamicObjectImpls,
reflec?ve method calls provides some
challenges.

Was able to write transforma?on
algorithm in Java, which was much
easier for me than in another more
domain specific language (such as ETL/
EOL).
In addi?on, this transforma?on
algorithm is highly modular. Someone
else could define a beker mapping
algorithm in Java, and swap it out very
easily while leaving the rest of our
environment intact, allowing for
efficiency based op?miza?on.

Using the na?ve Java calls in ETL
transforma?ons suppresses output
(and I couldn’t figure out how to get
output to flush ever). Some?mes I had
to resort to adding a null pointer
excep?on within my Java plug-in in
order to figure out if I had reached a
condi?onal branch.
In addi?on, needing to export the plug-
in .jar, and add to dropins folder on
Eclipse, then restart Eclipse added
overhead to debugging process.

Going hands on with a custom, self
made metamodel gave a new
apprecia?on for the uses of certain
meta-proper?es of eCore classes
(par?cularly containment, uniqueness)

AUer “re-registering” an EPackage it is
necessary to “refresh” EPackage
references by going to all references,
and dele?ng them and re-adding them.
A feature in Epsilon for “refreshing” all
references to exported EPackages of
the same name would have been a
great QOL change.

All these strange behaviors and QOL
issues that I documented had to be
discovered on-the-fly and were not
well documented. Some of them took
many hours to discover through lots of
trial-and-error.

 7

ECSE-539 Advanced So1ware Engineering
Autonomous Prognos>cs and Health Management Automa>on Language (APHMAL)

Project (April 10, 2022)
Group #539P 2

 Laffey, Ian ID# 260820791
Popov, Alex ID# 261057081

(the alphabe?cal order reflects also the contribu?on made by the team members in
descending order)

The following are the assump?ons made on the project in terms of current prac?ce on the crewed space
programs.

For the input/source/abstract syntax:

- Each crew member is recognized as a healthy person based on the formal pre-flight health screening
rou?ne and its results;

- Each crew member is provided with a set of his/her biomarkers;

- Biomarker is provided with a set of sensors, and a set of responders that “treat”/act upon the
biomarkers. There must be at least 1 sensor and 1 responder for each biomarker.

- Devices must have qualityType specified of type == Astronaut.Quality in order to be selected to treat
a biomarker. (1)

For the output/target/concrete syntax:

- The list of devices contained in an Astronaut all contain quali?es of type Input!Astronaut.Quality

- The list of devices has been op?mized to minimize the sum of quali?es for the qualityType given by
Input!Astronaut.Quality

- Each biomarker is covered by a responder and sensor (if (1) is met)

The purpose of the suggested and implemented transforma?on is to customize the standard set of
devices for each crew member based on his/her pre-flight health screening results, so to op?mize the
sets in accordance with individualized health self-monitoring concept and the HH&P autonomy
paradigm.

5. APHMAL METAMODEL
(The sec(on shows and discusses the metamodel of your domain-specific language. Include a diagram
for the metamodel that is laid out nicely, so that it is readable. Note that the discussion must not repeat
the informa(on available in the metamodel itself, but rather cover the key design decisions taken when
defining the metamodel.)
A .jpg diagram of the model has been included in our submission ?tled ‘eCSE539Project class diagram`
However, given that we used Emfa?c in order to specify the model, and our overall goals (outlined
below), with the metamodel, I feel it makes more sense to include the textual specifica?on as opposed
to the diagram (it is very readable)

Key Design decisions/Overall goal of metamodel:

Since we will be performing a mapping to and from our DSL, it is important that our metamodel facilitate
this. Also, to take advantage of Emfa?c easy to read code, by using enums, users can easily add new

 8

ECSE-539 Advanced So1ware Engineering
Autonomous Prognos>cs and Health Management Automa>on Language (APHMAL)

Project (April 10, 2022)
Group #539P 2

 Laffey, Ian ID# 260820791
Popov, Alex ID# 261057081

(the alphabe?cal order reflects also the contribu?on made by the team members in
descending order)

quali?es to the DSL on the fly! The overarching goal of the
meta-model was that it was simple, readable, and
extendable.

Another important thing to keep in mind is that this
simplifica?on of the metamodel means lots of useful
features could be added. We merely focused on the
mapping of Devices to biomarkers,- why have separate
Sensor and Responder classes, for example? The answer is
that this metamodel, and environment in general is meant
to be extendable/modular! Addi?onal akributes and
methods can be added differen?a?ng Sensor and
Responder, however in the context of our environment
these were not necessary.

6. THE ROUTINE TO RUN THE APHMAL EDITOR
(The sec(on describes how to run your language editor,
including an example model that shows all features of the
language. In addi(on, list all source files you have worked
on that are not fully generated. This includes the sample models – indicate which files are the sample
models.)

Here is the rou?ne to Analyze/Execute run the editor:

As discussed between Ian and Gunter, the editor merely consists of edi?ng a Flexmi document, with all
the features that Flexmi supports. As such the “editor” is Eclipse, with Epsilon and Flexmi installed, with
the Epsilon view enabled, addi?onally with the Outline view enabled to ease with model crea?on.

SOURCE FILES AND DESCRIPTIONS IN README.MD

ALL INCLUDED SOURCE FILES ARE NOT FULLY GENERATED- WITH THE EXCEPTION OF *.MODEL &
*.LAUNCH, MORE DETAILS ON IMPLEMENTATION IN VIDEO TUTORIAL

7. THE ROUTINE TO ANALYZE/EXECUTE APHMAL
(The sec(on describes how to analyze/execute your chosen domain-specific language and lists all source
files you have worked on that are not fully generated.)
Tutorial/Demo should provide addi(onal context on this execu(on

As outlined in Sec>on 3. the execu?on of APHMAL consists of:

 9

ECSE-539 Advanced So1ware Engineering
Autonomous Prognos>cs and Health Management Automa>on Language (APHMAL)

Project (April 10, 2022)
Group #539P 2

 Laffey, Ian ID# 260820791
Popov, Alex ID# 261057081

(the alphabe?cal order reflects also the contribu?on made by the team members in
descending order)

1. Install Epsilon Core & Epsilon Flexmi (Op?onal step: Extend .emf metamodel to your liking)

2. Generate EPackage from Emfa?c source

3. Define a model with Flexmi syntax

4. Specify this model as input model in ETL run config

5. Specify an output file path with same Emfa?c metamodel in ETL run config

6. Run ETL transforma?on

7. Observe output file

Analysis of APHMAL files:

The metamodel can be generated as an eCore file by Right click metamodel.emf -> Generate Ecore
Model. There is a direct mapping of Emfa?c source to eCore model so the generated eCore model can
be analyzed as a standard eCore model.

The ETL file is mostly just a wrapper for the Java method SampleTool object. A jar has been included (to
be placed in drop-ins folder, restart required), and the source has also been included. This source file was
handwriken by Ian Laffey in order to sa?sfy the problem of crea?ng low cost device mappings for
biomarkers. This could be re-wriken and re-compiled and “hot-swapped” into the model without
changing anything else, as long as it takes the required inputs/output (needs to take a list of biomarkers,
and return a list of sensors, these are represented as List<DynamicEObjectImpl>).

I akempted to write solid Java code, although I am not an expert on reflec?on, and eCore classes and
Types are rather complicated. The code has numerous helper methods that assist in the main goal
(crea?ng a device mapping). The name SampleTool indicates that this is merely a Sample algorithm, it
should be re-implemented before this entered a real life use case. I believe the Big O Time Complexity of
the algorithm to be quite poor. I think it is exponen?al (due to the subset permuta?ons), but I don’t
believe wri?ng an efficient algorithm to be the purpose of this project.

8. THE LANGUAGES INVOLVED IN THE APHMAL TRANSFORMATION
(The sec(on with a two-paragraph descrip(on of each language involved in your transforma(on that is
not discussed in the “Language defini(on” sec(on.)

At the risk of wri?ng superfluous informa?on I will detail the languages used in the transforma?on, and
what they do (at a high level).

Flexmi syntax is used to define the input model within the bounds of our metamodel. This can be viewed
as the abstract syntax of our language. There are numerous constraints defined in the language
defini?on. EOL Language is used in conjunc?on with ETL language for defining the transforma?on, which
then calls our na?ve Java algorithm. The output of the model can be viewed as a concrete syntax of our
APMHAL, where sensors and responders are mapped to cover biomarkers.

 10

ECSE-539 Advanced So1ware Engineering
Autonomous Prognos>cs and Health Management Automa>on Language (APHMAL)

Project (April 10, 2022)
Group #539P 2

 Laffey, Ian ID# 260820791
Popov, Alex ID# 261057081

(the alphabe?cal order reflects also the contribu?on made by the team members in
descending order)

9. MAPPING FROM SOURCE LANGUAGE TO TARGET LANGUAGE
The table describes the mapping from source language to target language for your transforma(on.

The source language == target language. I think it makes more sense to view this transforma?on as an
automated Concrete Syntax genera?on from Abstract Syntax defini?on.

Source:

Abstract Syntax

Target:
Concrete Syntax

APHMAL DNE, merely used as a container for informa?on
necessary for Concrete Syntax

Astronaut Astronaut

Device Astronaut.Device (based on mapping algorithm)

Biomarker DNE. Biomarker has been removed as it has
been treated by responders and sensors

Device.Quality Device.Quality (Quali?es are preserved within
the device)

Astronaut.Quality DNE as all devices in Astronaut.Devices now
contain that quality.

 11

