Clq -
& McGill
ECSE-539 Advanced Software Engineering
Winter 2022

Autonomous Prognostics and Health Management
Automation Language (APHMAL)

Project Report

Group #539P 2
Laffey, lan ID# 260820791
Popov, Alex ID# 261057081

April 10, 2022

ECSE-539 Advanced Software Engineering
Autonomous Prognostics and Health Management Automation Language (APHMAL)
Project (April 10, 2022)
Group #539P 2
Laffey, lan ID# 260820791
Popov, Alex ID# 261057081

(the alphabetical order reflects also the contribution made by the team members in
descending order)

TABLE OF CONTENTS
« INTRODUCTIONcuuisiaesuenssenssesssassssussssassasssssas sasssnsas sasssssss sasssnsss sassssast susssnasssussesasanssesssassnss 1
. RESPECTIVE CONTRIBUTION MADE BY THE PROJECT TEAM IMEMBERS.......cccceesennuemnennueisennnns 2
. LANGUAGE ENGINEERING AND TRANSFORMATION ENVIRONMENT .. cccstteumesaeeesneesaeesaseesaecsnne 3
. DESCRIPTION OF THE DOMAIN-SPECIFIC LANGUAGE CHOSEN : APHMALcovveinricnnnecnssncnens 4
« APHIMAL METAMODEL....custessisussesssessssessssssssessssssssesssesssssss st sssssssaessssss st sssens sesssassssasssssans 4
. THE ROUTINE TO RUN APHIVIAL EDITOR.....ctiistiistinsnessrinssnisssnsssnsssessssnessesssseesseassssesseasssesnns 6
. THE ROUTINE TO ANALYZE/EXECUTE APHMAL.....c.ceeviieinsnnninsssninsssninssesssssasssssssssssnsssssssases 7
. THE LANGUAGE INVOLVED IN THE APHIMAL TRANSFORMATION.....cccotteuuresuresencssnrcsnnesneennee 14
. MAPPING FROM SOURCE LANGUAGE TO TARGET LANGUAGE.......cccoerseesenssunssussenssecssnssassanens 14

ECSE-539 Advanced Software Engineering
Autonomous Prognostics and Health Management Automation Language (APHMAL)
Project (April 10, 2022)
Group #539P 2
Laffey, lan ID# 260820791
Popov, Alex ID# 261057081

(the alphabetical order reflects also the contribution made by the team members in
descending order)
1. Introduction

The Prognostics and Health Management (PHM) is a part of Systems Engineering domain and is essential
to properly design and implement aerospace-related programs and projects while PHM for Human
Health and Performance (HH&P) is a PHM-based application, since the paradigm shift on the programs
from telemedicine to HH&P autonomy and NASA’s adoption of Model-Based Systems Engineering
(MBSE) begun as early as 2011. MBSE Pathfinder and MBSE Infusion and Modernization Initiative
(MAIAMI) are the examples of NASA efforts being taken for the last five years, just to name a few, while
our project team believes that the APHMAL domain-specific language that is discussed on this project is
another complimentary effort in this direction. The APHMAL could be a part of the PHM-for-HH&P
solution with predictive screening capability, providing early and actionable real-time warnings on
impending health issues that otherwise would have gone undetected unless a symptom is manifested or
a sign is detected at a relatively late stage.

The project discusses the APHMAL definition, the metamodel of the domain-specific language, and
transformation which is about customizing and mapping a standard sensor set to an individualized set
for every crew member based on his/her pre-flight health screening results. The project also discusses
language engineering and the transformation environment chosen.

2. RESPECTIVE CONTRIBUTION MADE BY THE PROJECT TEAM MEMBERS
(The section with a one-paragraph description of who did what for the project)
Breakdown of work by Project part:
Part 1 Source Code: lan only
Part 2 Report: Section 1, Some of Section 4, Formatting & General editing: Alex. All other sections: lan

Part 3 Video: lan only
Part 4 Demo: Some slides prepared by Alex, technical descriptions and screenshots provided by lan

ECSE-539 Advanced Software Engineering
Autonomous Prognostics and Health Management Automation Language (APHMAL)
Project (April 10, 2022)
Group #539P 2
Laffey, lan ID# 260820791
Popov, Alex ID# 261057081

(the alphabetical order reflects also the contribution made by the team members in

descending order)
3. LANGUAGE ENGINEERING AND TRANSFORMATION ENVIRONMENT

The section with a detailed two-page experience report about your chosen language engineering and
transformation environment including a discussion on what went well and what did not go well.
The experience report will be written in the first person, from the experiential perspective of lan Laffey

Note:

For descriptions of Eclipse Ul interactions in bold, note that this run on Mac OS with

Eclipse Modeling Tools

Version: 2021-12 (4.22.0)

Build id: 20211202-1639

These Ul interaction descriptions are added as helpful information, your Ul experience may vary.

The first step towards creating the language engineering and transformation environment (henceforth
referred to simply as “the environment”) was to establish a working draft of the metamodel. This was
done with eCore to begin with, as that is what | had the most experience using for metamodelling. After
gathering feedback from Gunter, changes were implemented to the meta model and it was converted to
Emfatic.

Emfatic is a part of Epsilon- the set of modeling languages and tools that we used to create our
environment. Epsilon installation is done through the Eclipse installation manager. Installing the requisite
packages was done by selecting Help->Install New Software on Eclipse, and entering the URL of the
Epsilon Eclipse Install Site. Emfatic and ETL are a part of the Epsilon Core, and Flexmi was a separate
installation, as tools in Epsilon are not included in the Epsilon Core. The only difference with installing
Flexmi was a change of URL to the Flexmi Eclipse Install Site.

Now that Emfatic (and the rest of the Epsilon tools we will be using for our project) is installed through
Eclipse, the features are available in Eclipse after a restart. The existing eCore model (.eCore extension)
was easily mappable to Emfatic source (.emf extension) through Eclipse -> Right Click on eCore Model ->
Generate Emfatic Source. Now that the Emfatic source had been generated, further changes could be
made to the metamodel “on the fly” by editing the textual description of the metamodel. This was
especially useful for the scope of our environment, because the qualityType enum could be easily
changed by a user to add more qualityType options to the language specification.

In order to integrate Emfatic with other Epsilon based tools, it is necessary to use EPackages. Registering
EPackages is done through Eclipse Right Click on *.emf -> Register EPackages. It is also worth noting at
this point that EPackages use a URI, and specification of the package URI can be done through Emfatic.
Registered EPackages are given the URI specified in their corresponding Emfatic source. Now that the
EPackage has been generated, it can be referenced in all other Epsilon tools through a URI. The chosen
URI for our EPackage was aphmal.

ECSE-539 Advanced Software Engineering
Autonomous Prognostics and Health Management Automation Language (APHMAL)
Project (April 10, 2022)
Group #539P 2
Laffey, lan ID# 260820791
Popov, Alex ID# 261057081

(the alphabetical order reflects also the contribution made by the team members in
descending order)
Now that our EPackage has been generated, our metamodel specification can be used with our other

Epsilon based tools, languages, files. Any further changes to the metamodel can then be re-exported and
picked up by the Epsilon based tools (A refresh may be necessary).

The next step is to create Input models using Flexmi (YAML flavor, indentation based). The YAML Flavor
provides no functional/semantic difference from the standard Flexmi. It is merely to do with syntax of
the terms. Defining a Flexmi file consists of specifying the URI of the metamodel (this links the model to
the metamodel), and then specifying the model elements with the Flexmi YAML Flavor, Indentation
Based syntax. More info about the syntax can be found at https://www.eclipse.org/epsilon/doc/flexmi/.

It is also worth noting here that Flexmi files do not currently support programmatic saving
(resource.save()), and so | was unable to find a way to generate Flexmi models programatically. Flexmi is
therefore used to create and specify Input models in a lightweight, user friendly (even for non-technical
users), however Output models are saved as EMF .model files.

If a Flexmi model is created correctly, the Eclipse Outline View (Accessible through Eclipse -> Window ->
Show View -> Outline) will display a view of the model (similar to a EMF .model file) with a tree-like
containment view of model elements, references, attributes, etc. A couple of sample Flexmi models were
created in order to test out Flexmi features and metamodel, some tweaks were made to the metamodel
after seeing how actual model specification occurred, and more sample input models were planned for
the future.

Now that we have established input models, the next task is the actual transformation itself. More
details about the transformation will be discussed later in this report. In order to specify the
transformation, Epsilon ETL was used (.etl file extension). ETL requires input and output models specified
through Right click on *.etl -> Run as -> Run configurations -> ETL Transformation -> Models tab -> Add.
Our input and output metamodel are the same (and referenced through apmhal EPackage), however the
input file is specified as “*.flexmi”, and the output filetype is specified as “*.model”. In order to run ETL
transformations, rules are necessary. More about rule syntax is available at: https://www.eclipse.org/
epsilon/doc/etl/ It is worth noting that transformation use the form

rule name

transform s :input!Class

to t : output!Class{

(EOL Statements)+

}

where name can be anything, input refers to the name of the model for input (not the metamodel, the
model name specified in ETL run configurations), output refers to the name of the output model, Class is
a class in the metamodel. More about EOL Statements here: https://www.eclipse.org/epsilon/doc/eol/

Our model transformation necessitated an algorithm for mapping Sensors and Responders to
Biomarkers, based on minimizing a sum of integer values in this mapped set (more about this
elsewhere). ETL was not designed for such an algorithm, and I’'m unfamiliar with EOL (Maybe EOL would
have been a reasonable choice for implementing such an algorithm, but | am more comfortable in Java
and so | used Java), so the algorithm was defined in Java.

https://www.eclipse.org/epsilon/doc/flexmi/
https://www.eclipse.org/epsilon/doc/etl/
https://www.eclipse.org/epsilon/doc/etl/
https://www.eclipse.org/epsilon/doc/eol/

ECSE-539 Advanced Software Engineering
Autonomous Prognostics and Health Management Automation Language (APHMAL)
Project (April 10, 2022)
Group #539P 2
Laffey, lan ID# 260820791
Popov, Alex ID# 261057081

(the alphabetical order reflects also the contribution made by the team members in
descending order)

Epsilon provides a way of integrating Java code into EOL statements. This is done through creating a plug-
in project, adding an extension point to Epsilon tools, exporting the plug-in, adding the plug-in to Eclipse
dropping, where it can then be called by the command

var sampleTool = new Native("org.eclipse.epsilon.examples.tools.SampleTool");

This creates sampleTool as a native Java object that we can use to pass in our input Biomarker list, and
receive our output Device list. (Other things are passed to the method call to facilitate algorithm
execution, but at a high-level, it just maps biomarker lists to device lists for a specific astronaut)

We execute this algorithm for each of our Astronauts as specified in our ETL Transformation. Note that
static calls to native Java methods are also possible in ETL.

Now that this algorithm (which can be viewed as a black box by ETL), is completed the transformation is
relatively simple. ETL syntax is very similar to ATL syntax. Running the ETL transformation produces an
output model as expected. At this point, as debugging and testing of the transformation was occurring,
additional sample input models were created for testing purposes.

Finally, a set of input models was chosen for submission (as opposed to testing) to demonstrate the
features of our transformation.

What went well What didn’t go well
Able to create an input specification Setting up these tools is non-trivial.
that is (I believe), very user friendly/ Need to look carefully through
non technical documentation to figure out how to

set up the tools, and looking them up
is of little use as they are not
particularly mainstream currently.

Implement algorithm using rather Typical errors due to coding while
complicated reflexive operations and tired. Issues such as shallow vs deep
deep inheritance structure. Learned a | copying of a list. Needing to create re-
lot about eCore and Epsilon objects. usable code (for sensor and responder
lists). Actual sensor mapping algorithm
wasn’t completely trivial and some
mistakes were made there.

ECSE-539 Advanced Software Engineering
Autonomous Prognostics and Health Management Automation Language (APHMAL)
Project (April 10, 2022)

Group #539P 2

Laffey, lan ID# 260820791
Popov, Alex ID# 261057081

(the alphabetical order reflects also the contribution made by the team members in

Gained experience in working with
complicated tools with little “google
ability”. Docs were pretty solid, but
google did not work. Because of this |
needed to really look through the
documentation and understand what
was going on as opposed to looking up
individual components.

Transferring an on-paper algorithm
(where you can say for example: “if
sensor name is x”) to an algorithm
using EObjects, EDynamicObjectimpls,
reflective method calls provides some
challenges.

Was able to write transformation
algorithm in Java, which was much
easier for me than in another more
domain specific language (such as ETL/
EOL).

In addition, this transformation
algorithm is highly modular. Someone
else could define a better mapping
algorithm in Java, and swap it out very
easily while leaving the rest of our
environment intact, allowing for
efficiency based optimization.

Using the native Java calls in ETL
transformations suppresses output
(and I couldn’t figure out how to get
output to flush ever). Sometimes | had
to resort to adding a null pointer
exception within my Java plug-in in
order to figure out if | had reached a
conditional branch.

In addition, needing to export the plug-
in .jar, and add to dropins folder on
Eclipse, then restart Eclipse added
overhead to debugging process.

Going hands on with a custom, self
made metamodel gave a new
appreciation for the uses of certain
meta-properties of eCore classes
(particularly containment, uniqueness)

After “re-registering” an EPackage it is
necessary to “refresh” EPackage
references by going to all references,
and deleting them and re-adding them.
A feature in Epsilon for “refreshing” all
references to exported EPackages of
the same name would have been a
great QOL change.

All these strange behaviors and QOL
issues that | documented had to be
discovered on-the-fly and were not
well documented. Some of them took
many hours to discover through lots of
trial-and-error.

4. DESCRIPTION OF THE DOMAIN-SPECIFIC LANGUAGE CHOSEN : APHMAL

descending order)

(The section with a two-paragraph description of your chosen domain-specific language.)

Alex is running the “PHM for HH&P” session on the annual IEEE Aerospace conference and suggested the
domain-specific language for the project. The APHMAL could be a part of the PHM-for-HH&P solution
with predictive screening capability, providing early and actionable real-time warnings on impending
health issues that otherwise would have gone undetected.

ECSE-539 Advanced Software Engineering
Autonomous Prognostics and Health Management Automation Language (APHMAL)
Project (April 10, 2022)
Group #539P 2
Laffey, lan ID# 260820791
Popov, Alex ID# 261057081

(the alphabetical order reflects also the contribution made by the team members in
descending order)

The following are the assumptions made on the project in terms of current practice on the crewed space
programs.

For the input/source/abstract syntax:

- Each crew member is recognized as a healthy person based on the formal pre-flight health screening
routine and its results;

- Each crew member is provided with a set of his/her biomarkers;

- Biomarker is provided with a set of sensors, and a set of responders that “treat”/act upon the
biomarkers. There must be at least 1 sensor and 1 responder for each biomarker.

- Devices must have qualityType specified of type == Astronaut.Quality in order to be selected to treat
a biomarker. (1)

For the output/target/concrete syntax:
- The list of devices contained in an Astronaut all contain qualities of type Input!Astronaut.Quality

- The list of devices has been optimized to minimize the sum of qualities for the qualityType given by
Input!Astronaut.Quality

- Each biomarker is covered by a responder and sensor (if (1) is met)

The purpose of the suggested and implemented transformation is to customize the standard set of
devices for each crew member based on his/her pre-flight health screening results, so to optimize the
sets in accordance with individualized health self-monitoring concept and the HH&P autonomy
paradigm.

5. APHMAL METAMODEL
(The section shows and discusses the metamodel of your domain-specific language. Include a diagram
for the metamodel that is laid out nicely, so that it is readable. Note that the discussion must not repeat
the information available in the metamodel itself, but rather cover the key design decisions taken when
defining the metamodel.)
A .jpg diagram of the model has been included in our submission titled ‘eCSE539Project class diagram®
However, given that we used Emfatic in order to specify the model, and our overall goals (outlined
below), with the metamodel, | feel it makes more sense to include the textual specification as opposed
to the diagram (it is very readable)

Key Design decisions/Overall goal of metamodel:

Since we will be performing a mapping to and from our DSL, it is important that our metamodel facilitate
this. Also, to take advantage of Emfatic easy to read code, by using enums, users can easily add new

ECSE-539 Advanced Software Engineering
Autonomous Prognostics and Health Management Automation Language (APHMAL)
Project (April 10, 2022)

Group #539P 2
Laffey, lan ID# 260820791
Popov, Alex ID# 261057081

(the alphabetical order reflects also the contribution made by the team members in

qualities to the DSL on the fly! The overarching goal of the
meta-model was that it was simple, readable, and
extendable.

Another important thing to keep in mind is that this
simplification of the metamodel means lots of useful
features could be added. We merely focused on the
mapping of Devices to biomarkers,- why have separate
Sensor and Responder classes, for example? The answer is
that this metamodel, and environment in general is meant
to be extendable/modular! Additional attributes and
methods can be added differentiating Sensor and
Responder, however in the context of our environment
these were not necessary.

6. THE ROUTINE TO RUN THE APHMAL EDITOR
(The section describes how to run your language editor,
including an example model that shows all features of the
language. In addition, list all source files you have worked

1
2
3
4c
5
6

7

descending order)

@namespace(uri="apmhal", prefix="apmhal")
package eCSE539Project;

class APMHAL {

}

val NamedElement[x] elements;

8= abstract interface NamedElement {

9
10
11

'unique attr String name;

12= class Astronaut extends NamedElement {

val Device[*] devices;
ref Biomarker[x] biomarkers;
attr QualityTypel[1l] quality;

18= class Biomarker extends NamedElement {

19
20
21
22

}

ref Sensor[+] sensors;
ref Responder[+] responders;

23 abstract class Device extends NamedElement {

24
25
26
2

30

31

}

ref Biomarker[x] biomarkers;
val Quality[+] qualities;

28= class Responder extends Device {
29

//Further attributes/fnethods could go here

32 class Sensor extends Device {
//Further attributes/methods could go here

88
34
35

}

36 class Quality {

37
38
39
40

}

attr int[1] value;
attr QualityType[1l] qualityType;

41 enum QualityType {

42
43
44

45
46

I

weight = 0;
height = 1;
accuracy = 2;

on that are not fully generated. This includes the sample models — indicate which files are the sample

models.)

Here is the routine to Analyze/Execute run the editor:

As discussed between lan and Gunter, the editor merely consists of editing a Flexmi document, with all
the features that Flexmi supports. As such the “editor” is Eclipse, with Epsilon and Flexmi installed, with
the Epsilon view enabled, additionally with the Outline view enabled to ease with model creation.

SOURCE FILES AND DESCRIPTIONS IN README.MD

ALL INCLUDED SOURCE FILES ARE NOT FULLY GENERATED- WITH THE EXCEPTION OF *.MODEL &
*.LAUNCH, MORE DETAILS ON IMPLEMENTATION IN VIDEO TUTORIAL

7. THE ROUTINE TO ANALYZE/EXECUTE APHMAL
(The section describes how to analyze/execute your chosen domain-specific language and lists all source

files you have worked on that are not fully generated.)

Tutorial/Demo should provide additional context on this execution

As outlined in Section 3. the execution of APHMAL consists of:

ECSE-539 Advanced Software Engineering
Autonomous Prognostics and Health Management Automation Language (APHMAL)
Project (April 10, 2022)
Group #539P 2
Laffey, lan ID# 260820791
Popov, Alex ID# 261057081

(the alphabetical order reflects also the contribution made by the team members in
descending order)
1. Install Epsilon Core & Epsilon Flexmi (Optional step: Extend .emf metamodel to your liking)

2. Generate EPackage from Emfatic source

3. Define a model with Flexmi syntax

4. Specify this model as input model in ETL run config

5. Specify an output file path with same Emfatic metamodel in ETL run config
6. Run ETL transformation

7. Observe output file

Analysis of APHMAL files:

The metamodel can be generated as an eCore file by Right click metamodel.emf -> Generate Ecore
Model. There is a direct mapping of Emfatic source to eCore model so the generated eCore model can
be analyzed as a standard eCore model.

The ETL file is mostly just a wrapper for the Java method SampleTool object. A jar has been included (to
be placed in drop-ins folder, restart required), and the source has also been included. This source file was
handwritten by lan Laffey in order to satisfy the problem of creating low cost device mappings for
biomarkers. This could be re-written and re-compiled and “hot-swapped” into the model without
changing anything else, as long as it takes the required inputs/output (needs to take a list of biomarkers,
and return a list of sensors, these are represented as List<DynamicEObjectimpl>).

| attempted to write solid Java code, although | am not an expert on reflection, and eCore classes and
Types are rather complicated. The code has numerous helper methods that assist in the main goal
(creating a device mapping). The name SampleTool indicates that this is merely a Sample algorithm, it
should be re-implemented before this entered a real life use case. | believe the Big O Time Complexity of
the algorithm to be quite poor. | think it is exponential (due to the subset permutations), but | don’t
believe writing an efficient algorithm to be the purpose of this project.

8. THE LANGUAGES INVOLVED IN THE APHMAL TRANSFORMATION
(The section with a two-paragraph description of each language involved in your transformation that is
not discussed in the “Language definition” section.)

At the risk of writing superfluous information | will detail the languages used in the transformation, and
what they do (at a high level).

Flexmi syntax is used to define the input model within the bounds of our metamodel. This can be viewed
as the abstract syntax of our language. There are numerous constraints defined in the language
definition. EOL Language is used in conjunction with ETL language for defining the transformation, which
then calls our native Java algorithm. The output of the model can be viewed as a concrete syntax of our
APMHAL, where sensors and responders are mapped to cover biomarkers.

10

ECSE-539 Advanced Software Engineering
Autonomous Prognostics and Health Management Automation Language (APHMAL)
Project (April 10, 2022)
Group #539P 2
Laffey, lan ID# 260820791
Popov, Alex ID# 261057081

(the alphabetical order reflects also the contribution made by the team members in

descending order)
9. MAPPING FROM SOURCE LANGUAGE TO TARGET LANGUAGE

The table describes the mapping from source language to target language for your transformation.

The source language == target language. | think it makes more sense to view this transformation as an
automated Concrete Syntax generation from Abstract Syntax definition.

Source: Target:
Concrete Syntax
Abstract Syntax

APHMAL DNE, merely used as a container for information
necessary for Concrete Syntax

Astronaut Astronaut

Device Astronaut.Device (based on mapping algorithm)

Biomarker DNE. Biomarker has been removed as it has
been treated by responders and sensors

Device.Quality Device.Quality (Qualities are preserved within
the device)

Astronaut.Quality DNE as all devices in Astronaut.Devices now
contain that quality.

11

